徐硕,教授,博士生导师,主要从事科学前沿探测、技术预见、大数据和知识挖掘等方面的研究工作。曾获中国机械工业科学技术奖(省部级二等奖),“中央国家机关青年岗位能手”荣誉称号,中国图书馆学会“青年学术之星”荣誉称号,以及2019年新兴技术预测(Tech Emergence)竞赛全球第二名。主要学术兼职有:国家自然科学基金评审专家、全国研究生数学建模竞赛评审专家、中国工程院工程科技知识中心评价专家、知识产权知识挖掘与服务实验室学术委员会专家、第十三届亚洲信息检索社区国际会议(AIRS 2017)主席、中国技术经济学会复杂科学管理分会第一届理事会理事等。
曾主持“十二五”国家科技支撑计划课题、国家自然科学基金项目、北京市社会科学基金项目、科技部科技创新战略研发专项及广东省自然科学基金项目等,以课题骨干身份参与多项国家级及省部级研究课题。近年来,在《Journal of the Association for Information Science and Technology》、《Journal of Informetrics》、《Scientometrics》、《Technology Forecasting and Social Change》和《Journal of Information Science》等重要期刊/会议上发表学术论文100余篇,撰写学术专著1部,以第一发明人身份申请发明专利11项,被授权韩国和中国发明专利各1项。
个人主页:http://54xushuo.net/wiki,联系方式:xushuo@bjut.edu.cn或pzczxs@gmail.com
主要学术成果:
[1] Shuo Xu, Liyuan Hao, Guancan Yang, Kun Lu, and Xin An. A Topic Models based Framework for Detecting and Forecasting Emerging Technologies [J].Technology Forecasting and Social Change, 2021, 162: 120366.
[2] Liang Chen,Shuo Xu*, Lijun Zhu, Jing Zhang, Xiaoping Lei, and Guancan Yang. A Deep Learning based Method for Extracting Semantic Information from Patent Documents [J].Scientometrics, 2020, 125(1): 289-312.
[3] Shuo Xu, Liyuan Hao, Xin An, Hongshen Pang, and Ting Li. Review on Emerging Research Topics with Key-Route Main Path Analysis [J].Scientometrics, 2020, 122(1): 607-624.
[4] Shuo Xu, Liyuan Hao, Xin An, Guancan Yang, and Feifei Wang. Emerging Research Topics Detection with Multiple Machine Learning Models [J].Journal of Informetrics, 2019, 13(4): 100983.
[5] Shuo Xuand Xin An. ML2S-SVM: Multi-Label Least-Squares Support Vector Machine Classifiers [J].The Electronic Library, 2019, 37(6): 1040-1058.
[6] Shuo Xu, Liyuan Hao, Xin An, Dongsheng Zhai, and Hongshen Pang. Types of DOI Errors of Cited References in Web of Science with a Cleaning Method [J].Scientometrics, 2019, 120(3): 1427-1437.
[7] Shuo Xu, Dongsheng Zhai, Feifei Wang, Xin An, Hongshen Pang, & Yirong Sun. A Novel Method for Topic Linkages between Scientific Publications and Patents [J].Journal of the Association for Information Science and Technology, 2019, 70(9): 1026-1042.
[8] Xin An, Yali Wen, Yaoqi Zhang, andShuo Xu*. Evaluation of the Forestry and Environmental Conservation Policies in Western China with Multi-Output Regression Method [J].Computers and Electronics in Agriculture, 2019, 159: 239-246.
[9] Shuo Xu, Junwan Liu, Dongsheng Zhai, Xin An, Zheng Wang, & Hongshen Pang. Overlapping Thematic Structures Extraction with Mixed-Membership Stochastic Blockmodel [J].Scientometrics, 2018, 117(1): 61-84.
[10] Shuo Xu. Bayesian Naïve Bayes Classifier to Text Classification [J].Journal of Information Science, 2018, 44(1): 48-59.
[11] Zheng Wang,Shuo Xu*, and Lijun Zhu. Semantic Relation Extraction Aware of N-Gram Features from Unstructured Biomedical Text [J].Journal of Biomedical Informatics, 2018, 86: 59-70.
[12] Shuo Xu, Xiaodong Qiao, Lijun Zhu, Yunliang Zhang, Chunxiang Xue, and Lin Li. Reviews on Determining the Number of Clusters [J].Applied Mathematics & Information Sciences, 2016, 10(4): 1-20.
[13] Shuo Xu, Xin An, Lijun Zhu, Yunliang Zhang, and Haodong Zhang. A CRF-based System for Recognizing Chemical Entity Mentions (CEMs) in Biomedical Literature [J].Journal of Cheminformatics, 2015, 7(Suppl 1): S11.
[14] Shuo Xu, Qingwei Shi, Xiaodong Qiao, Lijun Zhu, Han Zhang, Hanmin Jung, Seungwoo Lee, and Sung-Pil Choi. A Dynamic Users’ Interest Discovery Model with Distributed Inference Algorithm [J].International Journal of Distributed Sensor Network, 2014, 2014(280892): 1-11.
[15] Shuo Xu, Xin An, Xiaodong Qiao, and Lijun Zhu. Multi-Task Least-Squares Support Vector Machines [J].Multimedia Tools and Applications, 2014, 71(2): 699-715.
[16] Shuo Xu, Xin An, Xiaodong Qiao, Lijun Zhu, and Lin Li. Multi-Output Least-Squares Support Vector Regression Machines [J].Pattern Recognition Letters, 2013, 34(9): 1078-1084.
[17] 张晗,徐硕*,乔晓东.融合科技文献内外部特征的主题模型发展综述[J].情报学报,2014,33(10): 1108-1120.
[18] 史庆伟,乔晓东,徐硕*,农国武.作者主题演化模型及其在研究兴趣演化分析中的应用[J].情报学报,2013,32(9): 912-919.
[19] 徐硕,乔晓东,朱礼军,张运良,薛春香.共现聚类分析的新方法:最大频繁项集挖掘[J].情报学报,2012,31(2): 143-150.
[20] 徐硕,乔晓东,朱礼军,郭怀恩.仅根据Proximity数据构建向量空间模型的方法[J].情报学报, 2011,30(11): 1163-1170.
[21] 徐硕,朱礼军,乔晓东,薛春香.基于双序列比对的中文术语相似度计算的新方法[J].情报学报,2010,29(4): 701-708.
[22] 徐硕著.基于论文和专利资源的技术机会发现方法.北京:科学技术文献出版社.
主要发明专利:
[1] 徐硕,史庆伟,乔晓东,朱礼军.科研信息演化的分析方法和装置.专利号:ZL201310522710.6.授权时间:2017.01.11.(中国)
[2] Shuo Xu, Qingwei Shi, Xiaodong Qiao, and Lijun Zhu. Analysis Method and Device for Scientific Research Information Revolution.专利号:10-1679249.授权时间:2016.11.18.(韩国)
主持科研项目:
[1] 国家自然科学基金面上项目:科技关联视角下新兴技术弱信号扫描预判方法研究(72074014),在研,2021年01月至2024年12月;
[2] 广东省自然科学基金项目:面向生物医药领域的前沿技术预判方法论与模型构建研究(2018A030313695),在研,2018.05至2021.04;
[3] 北京市社会科学基金一般项目、北京市教委社科计划重点项目:大数据驱动的可制造性知识挖掘与管理方法研究(17GLB074),在研,2018.01至2020.12;
[4] 科技部科技创新战略研究专项:主要国家创新政策数据库平台(ZLY2015094),结题,2016.01至2016.12;
[5] 国家自然科学基金青年项目:基于论文和专利资源的技术机会发现研究(71403255),结题,2015.01至2017.12;
[6] “十二五”科技支撑计划课题:基于多源信息的电动汽车数据挖掘关键技术研究(2013BAG06B01),结题,2013.02至2015.01。